

Virtual Design Review 4 Team 515 - Controllable CVT Device

-

Kemani Harris, Aaron Havener, Jacob Hernandez, Aliya Hutley, and Cade Watson

Meet Team 515

Kemani Harris Dynamics Engineer

Aaron Havener Controls Engineer

Jacob Hernandez Design Engineer

Aliya Hutley System Engineer & POC

Cade Watson Materials Engineer

Sponsor & Advisor

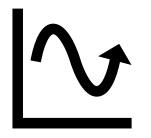
Florida Agriculture & Mechanical University and Florida State University

Dr. Carl Moore Jr. Associate Professor

Objective

The objective of this project is to enhance the education of haptic robotics by creating a device using continuously variable transmissions (CVTs). The device is intended to utilize computer control and move through various positions to produce accurate output motion.

The primary goal of this project is to utilize CVT technology to present to STEM-curious students:

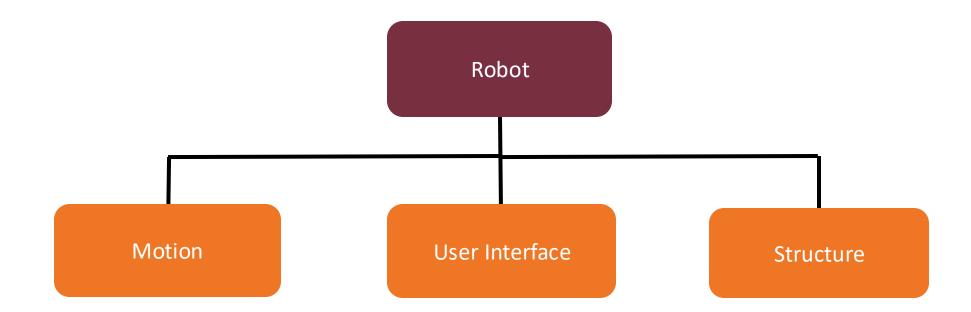

General autonomous robotic technology The mechanical principle of CVT's

The use of CVT's in robotics

Other key design goals have been and still are:

Precise, autonomous two-dimensional movement

Customizable, welldisplayed, and engaging output



Use in multiple locations


Three main systems are employed:

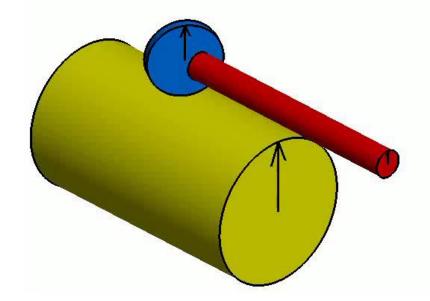
Proposed Concept

The selected concept from Fall Semester utilizes two-dimensional motion to create an interactive guessing game using light.

However

Sensing and control design was underdeveloped

Linkage design was neglected


Rolling material choice was left unverified

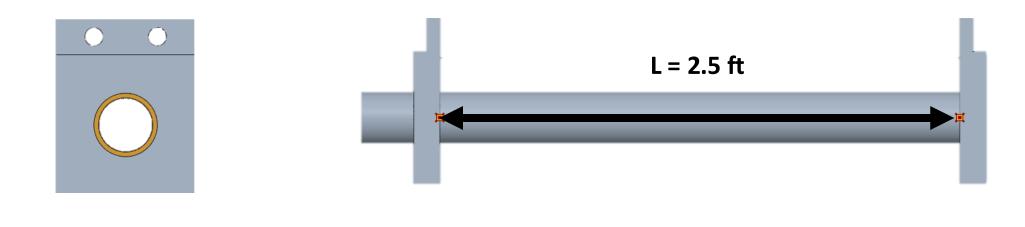
What Has Been Done? Motion System: Rolling Member Material Selection:

- Need for both rolling and slip drives material selection
- A design friction coefficient of 0.215 was previously calculated
- Material hardness is also a consideration

What Has Been Done? Motion System: Rolling Member Material Selection

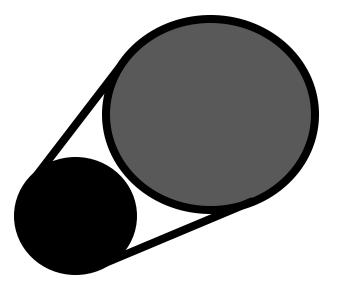
- A Polyurethane wheel PVC cylinder combination was originally proposed, but:

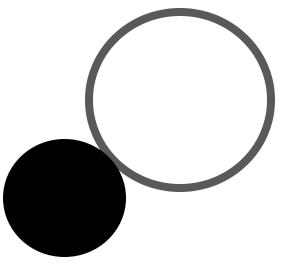
 Determining a friction coefficient was difficult
 Previous issues showed a harder material was needed
- Nylon and Aluminum showed to be great candidates for materials (μ near 0.3)
- A 2" diameter Nylon wheel (left) and 3" diameter Aluminum cylinder (right) has been selected



What Has Been Done? Motion and Structure Systems: Base Design

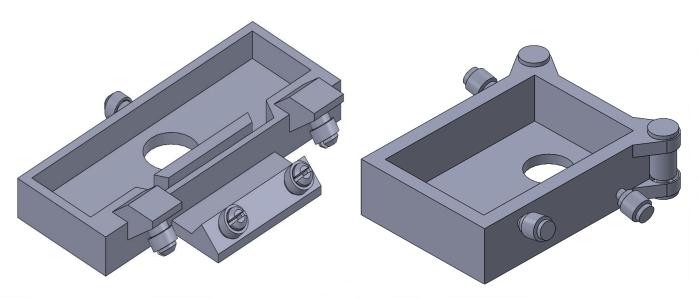
- To maximize output size while maintaining a reasonable footprint, a nominal cylinder length of 2.5 ft was chosen (shown by black arrow on right view)
- Plain bearings have been proposed to support rotation (shown by brass color on front view)




Cade Watson

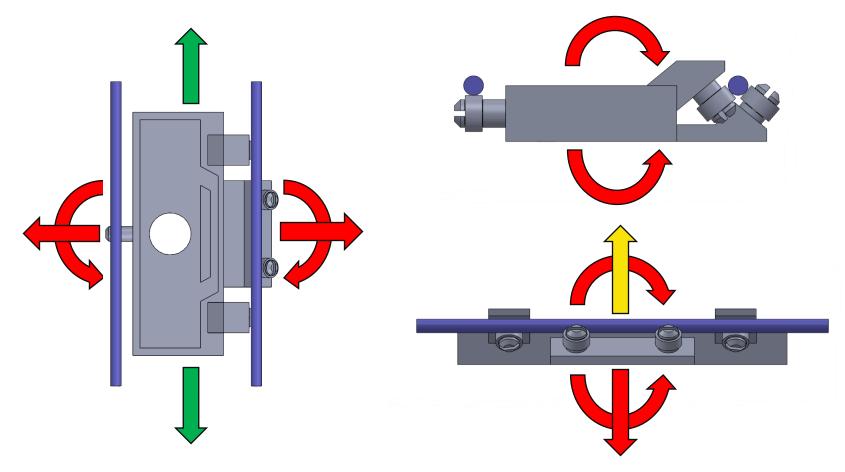
What Has Been Done? Motion System Cylinder Power Method

To transfer rotational mechanical power from a source to the cylinder, multiple options are currently being explored:


A belt drive mated to a pulley or some frictional sleeve on the cylinder (more consistent power transmission, but proving to be costly in both time and finances)

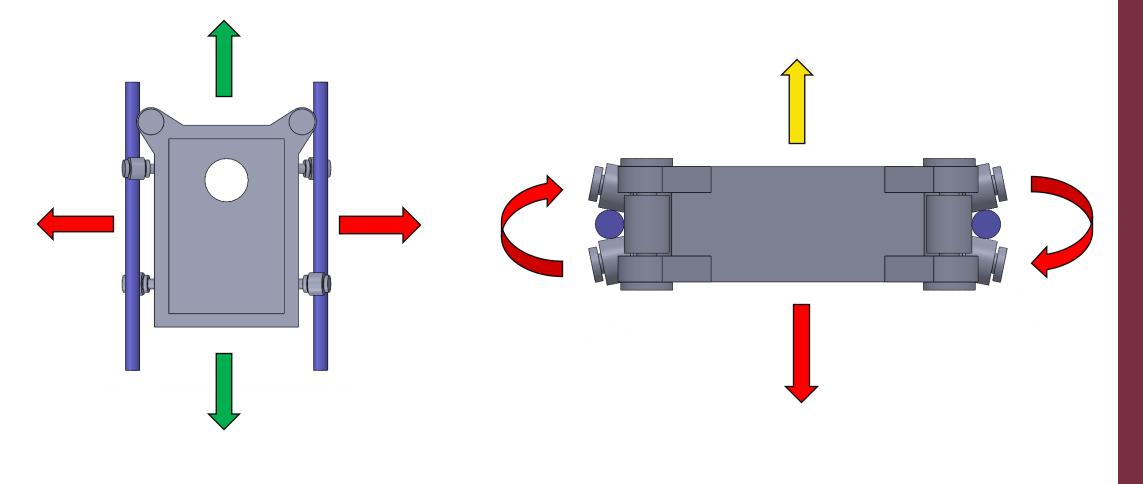
A frictional drive using some preloaded wheel attached directly to the cylinder (simpler, but slip is possible)

What Has Been Done? Motion and Structure Systems: Carriage Design



Goals:

- Achieve 1 DOF
- Accommodate for different types of component arrangements
- Ensure smooth movement



What Has Been done? Motion and Structure Systems: Prototype Carriage 1

FAMU-FSU College of Engineering

What Has Been done? Motion and Structure Systems: Prototype Carriage 2

FAMU-FSU College of Engineering

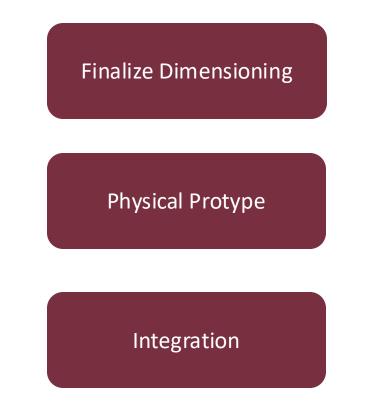
What has been done? Linkage Design

Equal Link

Length

2) Slider Linkage

3) Middle Coupler


Point

1)

3 2 1

Future works Linkage Design

Future Works

Key Difference

Processor

Clock Speed

Memory

Wireless

PWM

Connectivity

Resolution

PWM Pins

Power Supply

Price Range

Recommended Component Selection

Arduino Mega 2560

ESP32 – S3

((DD)-

8-bit, single-core	32-bit Dual-core	Microcontroller (Arduino Mega 256) ESP32-S3)	0 vs. (DYNAMIX	Motor: EL AX Series G996R)	Sensor: (Linear Potentiometer vs. Ultrasonic Sensor)
16 MHz	240 MHz	201 02 00)			
8 KB SRAM, 256 KB Flash	512 KB SRAM, 16 MB Flash		DYNAMIXEL		DYNAMIXEL
None	Wi-Fi, Bluetooth	Component	AX-18A	MG996R	AX-12A
8-bit	16-bit	Torque (Nm)	1.8 (12V)	1.08 (6V)	1.5 (12V)
15 pins	5 up to 32 pins	Speed	0.10	0.17	0.110
7-12V	3.3V	(sec/60)	0.19	0.17	0.119
\$48.40	\$22	Cost (\$)	\$ 109.90	\$ 11.20	\$ 49.90

Jacob Hernandez

Future Works – What To Expect Next Time?

Motion System:

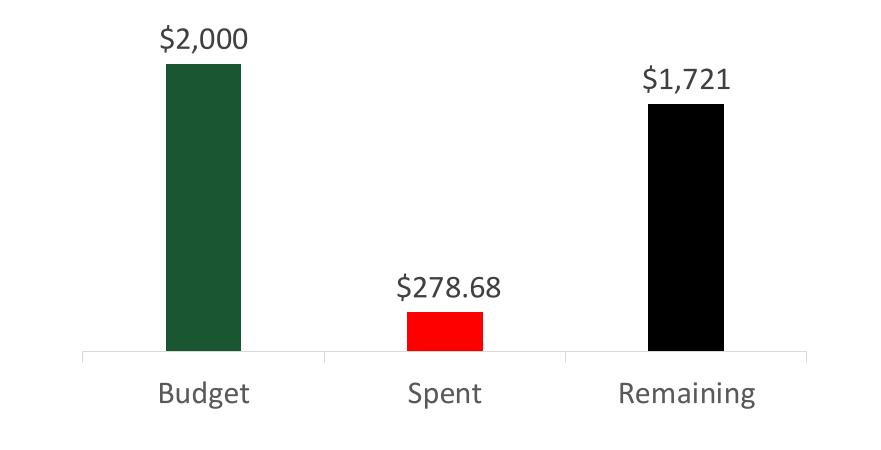
- CVT power method selected
- Motor and control hardware selected
- Major carriage and linkage design update completed
- Major progress on control algorithm achieved and testing started

User Interface System:

- Hardware selected
- Progress on codebase achieved

Structure System:

 Base design updated to fit carriage design and hardware


Future Works – What To Expect Next Time?

PROJECT: T515 Controllable CVT

FAMU-FSU College of	Engineerin	g			Legend:	Or	n trac	: k	L	.ow r	isk		Me	d risl	c	H	igh r	isk	ι	Jnas	sign	ed						
Kemani Harris, Aaron	Havener, J	acob Hernande	z, Aliya Hu	tley, Cade V	Watson																							
Project start date:	1/6/2025					Jan	uary													Fe	bru	ary						
Scrolling increment:	7					13 1	14 15	16 1	7 18	19 2	20 21	22 2	23 =	25	26 27	7 28	29 3	0 31	1	2 3	4	56	7	8	9 10) 11	12	13 14
Milestone description	Category	Assigned to	Progress	Start	Days	м	т ч	TF	s	sı	мт	W	T F	s	sм	т	Υ.	F	s	sм	т	wт	F	s	s M	Т	w	T F
Select Materials for Wheels/Cylinder	High Risk	Cade Watson	75%	1/14/2025	16																							
CAD Design	On Track	Jacob Hernandez	50%	1/14/2025	24																							
Model and Simulate	Low Risk	Aaron Havener	10%	1/14/2025	24																							
Linkage Design	On Track	Kemani Harris	50%	1/14/2025	24																							
Motor, Microcontroller, and Sensor Selection	Med Risk	Aliya Hutley	50%	1/21/2025	9																							
Design Review 4	Milestone	All	75%	1/28/2025	1											►												
Send Order Request	Goal	All	60%	1/29/2025	1												•											
Establish Test Plan	High Risk	Aaron and Aliya	0%	1/31/2025	5																							
Rough Prototype Assembly and Systems Integration	On Track	All	0%	2/7/2025	з																							
Prototype Testing	Low Risk	All	0%	2/10/2025	2																							
Establish Control Method	Med Risk	Aaron and Aliya	0%	2/12/2025	2																							
Design Review 5	Milestone	All	45%	2/14/2025	1																							⊳

Thank You

References

Faulring, E. L., Colgate, J. E., & Peshkin, M. A. (2006). *The cobotic hand controller: Design, control, and performance of a novel haptic display*. Department of Mechanical Engineering, Northwestern University.

Faulring, E. L., Colgate, J. E., & Peshkin, M. A. (2005). *A high performance 6-DOF haptic cobot*. Department of Mechanical Engineering, Northwestern University.

Matsushita, K., Shikanai, S., & Yokoi, H. (2009). Development of drum CVT for a wire-driven robot hand. In *Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems*. IEEE.

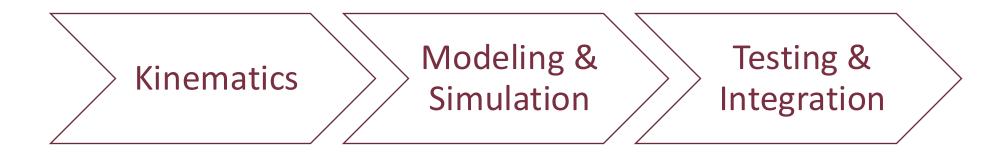
Arduino. (n.d.). Arduino Mega 2560 Rev3.

Espressif Systems. (2023). ESP32-S3 series datasheet.

Dynamixel AX-18A:ROBOTIS. (n.d.). www.robotis.us

Dynamixel AX-12A:ROBOTIS. (n.d.). www.robotis.us

TowerPro. (n.d.). *MG996R servo motor*. TorqPro. Retrieved January 17, 2025, from https://torqpro.com/product/mg996r/


PTC. (n.d.). *Friction Coefficients*. PTC Help Center. https://support.ptc.com/help/wrr/r13.0.1.0/en/index.html#page/wrr/ReferenceGuide/prediction/friction_ coefficients.html

Back Up Slides

Future Works – What To Expect Next Time?

Font Check

- This is 10-point
- This is 15-point Times
- This is 20-point
- This is 25-point
- This is 30-point
- This is 35-point
- This is 40-point
- •This is 50–point
- •This is 60-point

